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Abstract. Given a vector space of microscopic quantum observables, density functional theory
is formulated on its dual space. A generalized Hohenberg–Kohn theorem and the existence of
the universal energy functional in the dual space are proven. In this context ordinary density
functional theory corresponds to the space of one-body multiplication operators. When the
operators close under commutation to form a Lie algebra, the energy functional defines a
Hamiltonian dynamical system on the coadjoint orbits in the algebra’s dual space. The enhanced
density functional theory provides a new method for deriving the group theoretic Hamiltonian
on the coadjoint orbits from the exact microscopic Hamiltonian.

1. Introduction

Density functional theory, in its simplest form, is a theory for nondegenerate ground states
that replaces the many-particle antisymmetrized wavefunction by its densityρ(r). The
Hohenberg–Kohn theorem shows that there exists a universal energy functional minimized
by the density of the exact ground-state wavefunction [1, 2]. In addition to ubiquitous
applications in quantum chemistry [3], this many-body theory solves problems in solid state
[4, 5] and nuclear physics [6].

Our aim is to generalize density functional theory to a framework where the densities are
elements of the dual space to a vector space of microscopic observables. The Hohenberg–
Kohn theorem is proven in this context, and the existence of the universal energy functional
on the dual space is established. If the vector space is also a Lie algebra, then a group
theoretic model is defined naturally on the coadjoint orbits of the algebra’s dual space.
The generalized Hohenberg–Kohn theorem enables the derivation of the group theoretic
Hamiltonian from the microscopic Hamiltonian on Fock space. The problem of constructing
an algebraic model Hamiltonian from the microscopic interaction is an old one in group
theory with many potential applications to the description of complex many-body systems.

Let H denote the Hilbert space ofN -fermion antisymmetrized state vectors,P(H) its
complex projective space, andH the self-adjoint Hamiltonian operator onH. Supposeg
is a real linear vector space of Hermitian operators defined onH, andg∗ is its dual space,
i.e. the vector space of real-valued linear functionals ong. Denote the pairing between a
dual elementρ ∈ g∗ and an operatorX ∈ g by 〈ρ,X〉 ≡ ρ(X). Define the moment map
M : P(H)→ g∗ from the projective space of states to the dual space by

〈M(φ),X〉 := 〈φ|Xφ〉〈φ|φ〉 (1)

whereφ ∈ H, X ∈ g, M(φ) ∈ g∗. A brief history of the moment map is given on p 327
of [7]. Define the energy mappingF : P(H) → R from the projective space to the real
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numbers by

F(φ) := 〈φ|Hφ〉〈φ|φ〉 (2)

and for each fixedX ∈ g, defineFX : P(H)→ R by

FX(φ) := F(φ)+ 〈M(φ),X〉. (3)

For most physical systems only a few quantum states are observed or are of direct
interest, e.g. the ground state, rotational and vibrational bands, collective states, and
resonances. Although the microscopic theory on the Hilbert spaceH is complete, it
may obfuscate the true physics because all degrees of freedom are treated democratically.
By selecting out the most relevant degrees of freedom, a discriminating model based
on the observables ing can elucidate the physics and simplify the mathematics. The
moment mapping is an indispensable tool for creating a tractable theoretical description
of microscopic many-body systems. The densityρ = M(φ) retains only part of the entire
information about the system that the wavefunctionφ carries, but a very important part—the
expectations of the observables that spang.

When g is a subspace of real-valued measurable functionsv(r) on R3, andg∗ is the
space ofL1 functions

g
∗ =

{
ρ : R3→ R

∣∣∣∣ ∫ |ρ(r)| d3r <∞
}

(4)

conventional density functional theory is recovered. The elements ofg are regarded as
Hermitian multiplication operators onH by associating the one-body operator

∑N
n=1 v(rn)

with the functionv(r) ∈ g. The pairing is given by〈ρ, v〉 = ∫
ρ(r)v(r) d3r. If φ is

normalized, then the moment mapM(φ) = ρ is

ρ(r) = N
∫
|φ(r, r2, . . . , rN)|2 d3r2 . . .d

3rN . (5)

The functionalFv(φ) is the expectation of the energy including the one-body external
potential

∑
n v(rn).

Von Neumann’s density matrix formulation of quantum mechanics is included in the
formalism presented here by lettingg be the space of all (not just one-body) Hermitian
operators onH. The dual spaceg∗ may be identified with a space of Hermitian operators
where the pairing is defined by〈ρ,X〉 = tr(ρX). The moment map is given by
M(φ) = |φ〉〈φ| if φ ∈ H is normalized. In this case, the moment map is one-to-one, and
the microscopic theory is physically and mathematically equivalent to the density matrix
expression of quantum mechanics.

Another example is provided by cranking Hamiltonians or Routhians for whichg and
g∗ are isomorphic to the real three-dimensional vector spaceR3. The Hermitian operator
corresponding toω ∈ g isω·J , whereJ denotes the one-body angular momentum operators
onH. The pairing is the dot product,〈ρ,ω〉 = ρ · ω, and the moment map isM(φ) = ρ,
where

ρk = 〈φ|Jkφ〉〈φ|φ〉 . (6)

Note thatFω(φ) is the expectation of the cranking Hamiltonian.
In the case of the cranked Nilsson model, the spaceg consists of all Hermitian operators

formed from linear combinations of the angular momentumJ and the quadrupole operator
Q(2)
µ =

∑
n r

2
nY

(2)
µ (�n). This eight-dimensional spaceg is the rotational model Lie algebra
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rot (3). The full Nilsson model expandsg to a 10-dimensional space that includes the spin–
orbit interaction and the square of the orbital angular momentum. Several more examples
are produced by taking the vector space of operators to be the Elliottsu(3) algebra [8], the
Ginocchioso(8) fermion algebra [9], the general collective model algebragcm(3) [10], the
symplectic model algebrasp(3,R) [11], and the unitary algebra of all one-body operators.
In many of these examples the vector spaceg is a Lie algebra with respect to operator
commutation. In section 3 it is shown that when this additional algebraic structure is
present, a mean-field theory is naturally defined on the coadjoint orbit surfaces in the dual
spaceg∗.

2. Hohenberg–Kohn–Levy

In this section the fundamental Hohenberg–Kohn theorem is proven in the extended
framework of an arbitrary vector space of operatorsg on Fock space. The Levy constrained-
search formulation is also established in this general case.

Define the set of statesS consisting of everyφ ∈ P(H) that is an absolute nondegenerate
minimum of FX for someX ∈ g. SetC equal to the image ofS under the moment map,
C = M(S) ⊂ g∗.

Theorem 1.The moment mapM : S → C is an injection.

Proof. The proof of this theorem is similar to the original Hohenberg–Kohn argument
[1]. Suppose, to the contrary, that there are two distinct statesφ1, φ2 ∈ S, φ1 6= φ2, yet
M(φ1) = M(φ2). There are operatorsX1, X2 ∈ g such thatφ1 is an absolute nondegenerate
minimum forFX1 andφ2 is an absolute nondegenerate minimum forFX2. Sinceφ1 6= φ2,
the nondegeneracy of the minima implies

E1 ≡ FX1(φ1) < FX1(φ2)

E2 ≡ FX2(φ2) < FX2(φ1).

g is a vector space, soX1−X2 ∈ g and

E1 < FX1(φ2) = F(φ2)+ 〈M(φ2), (X1−X2)+X2〉
= FX2(φ2)+ 〈M(φ2), (X1−X2)〉

or

E1 < E2+ 〈M(φ2), (X1−X2)〉.
By repeating the argument for interchanged 1 and 2,

E2 < E1+ 〈M(φ1), (X2−X1)〉.
Adding the two equations, and recalling thatM(φ1) = M(φ2), leads to the contradiction

E1+ E2 < E2+ E1.

Hence, for two distinct states inS the moment map yields two distinct densities inC. �

The theorem depends only on the vector space structure ofg, not on any possible
additional algebraic structure. It is a corollary that for eachX ∈ g, the mapping
F̃X = FX ◦ M−1 : C → R is well defined. The stateφ minimizes FX on S if and
only if ρ = M(φ) minimizesF̃X on C.

A densityρ is said to bev- or, in the general setting,X-representable ifρ ∈ C = M(S).
The energy functional must be minimized on the set ofX-representable densities. If the
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X-representable densities can only be characterized by their defining property as an image
of a set ofN -fermion wavefunctions, this minimization is equivalent to the original many-
body eigenvalue problem on Fock space. Another problem is that the existence theorem’s
proof does not provide a construction of the energy functional.

These two problems are circumvented by the constrained search formulation of Levy
[12, 13]. Consider the image of the moment mapCN = M(P(H)), for which g∗ ⊃ CN ⊃ C.
A densityρ is said to beN -representable ifρ ∈ CN . Define the energy functional

E : CN → R
E[ρ] = inf

φ∈M−1(ρ)
F (φ) (7)

and alsoEX[ρ] = E[ρ] + 〈ρ,X〉 for ρ ∈ CN .

Theorem 2.The ground-state energyE0 satisfies the minimization condition

E0 = inf
ρ∈CN

EX[ρ]

and the ground-state densityρ0 attains this minimized energy. Ifρ is X-representable, then
EX[ρ] = F̃X(ρ).

Proof. The ground-state energy minimizes the expectation of the total Hamiltonian:

E0 = min
φ∈H

FX(φ)

= min
ρ∈CN

{
min

φ∈M−1(ρ)
(F (φ)+ 〈M(φ),X〉)

}
= min

ρ∈CN
(E[ρ] + 〈ρ,X〉).

If φ0 ∈ S is a nondegenerate ground state,ρ0 ∈ C its density, andE0 = EX[ρ0] the
ground-state energy, then

E0 = FX(φ0) = F̃X(ρ0).

�

Thus, according to the generalized Levy’s theorem, it is sufficient to minimize the
energy functional on the space of allN -representable densities instead of allX-representable
densities.

To determine the universal energy functionalE[ρ], the Lagrange multiplier theorem,
suitably extended to Banach spaces, may be applied to eliminate the constraint toφ ∈
M−1(ρ) from the functional’s defining equation (7). This is achieved by regarding the
pairing〈ρ,X〉 as a Lagrange multiplier term while the operatorX is the Lagrange multiplier
itself. Suppose the vector space of operators is self-dual, i.e. the dual space tog∗ is g, and
it is a Banach space, i.e. a norm‖X‖ is defined ong. Both conditions are satisfied, for
example, if the space is finite-dimensional. Suppose thatM−1(ρ) is a submanifold ofP(H).

Theorem 3.The following are equivalent conditions onφ0 ∈ M−1(ρ):
(i) φ0 is a critical point ofF(φ) restricted toM−1(ρ); and
(ii) there is aX0 ∈ g such that(X0, φ0) is a critical point ofFX(φ) on the space

g× P(H).
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The universal energy functional is given byE[ρ] = F(φ0) when the critical point
corresponds to an absolute minimum. To test for a minimum, letα be a real positive
constant,(X0, φ0) a critical point ofFX(φ), and set

FαX(φ) = FX(φ)+ α‖X −X0‖2 (8)

that also has a critical point at(X0, φ0). If the restriction ofF(φ) to M−1(ρ) has a
nondegenerate minimum atφ0, then for sufficiently large positiveα, FαX(φ) is minimized at
(X0, φ0). This observation may be used to identify minima using the unconstrained second-
derivative test. The Newton method, in its Banach space generalization, may be applied to
compute critical points forFαX(φ) [14]. See p 219 of [7] for the theorem’s proof.

3. Coadjoint orbits

Suppose the vector space of Hermitian operatorsg is a Lie algebra and letG denote the
corresponding simply connected and connected Lie group of unitary operators. The group
action ofG on Fock space naturally induces the coadjoint action Ad∗

g of G on the dual
space of densities. To show this, supposeφ ∈ H andg · φ ∈ H is the result of the unitary
representation ofg ∈ G acting onφ. If ρ = M(φ), thenM(g · φ) = Ad∗g(ρ), since

〈M(g · φ),X〉 = 〈g · φ|Xg · φ〉/〈g · φ|g · φ〉
= 〈φ|g−1Xg · φ〉/〈φ|φ〉
= 〈ρ,Adg−1(X)〉
= 〈Ad∗g(ρ),X〉 (9)

for all X ∈ g. Thus the coadjoint action leaves the space ofN -representable densities
invariant, Ad∗g : CN → CN .

If G is a symmetry group of the HamiltonianH , then the energy functional transforms
according to the adjoint transformation,

EX ◦ Ad∗g = EAd
g−1(X) (10)

for X ∈ g andg ∈ G. If ρ ∈ C is an absolute nondegenerate minimum forEX, then Ad∗g(ρ)
is an absolute nondegenerate minimum forEAd

g−1(X). Therefore, ifG is a symmetry group
for the Hamiltonian, the coadjointG-action leaves the space ofX-representable densitiesC
invariant.

In conventional density functional theory, the Abelian Lie algebra integrates to an
Abelian group of unitary operators

G =
{
g = exp

(
i
N∑
n=1

f (rn)

)
, f ∈ g

}
(11)

andG is the isotropy subgroup at each density, Ad∗
g(ρ) = ρ. If φ ∈ H andM(φ) = ρ ∈ CN ,

then the energy functional satisfies

E[ρ] 6 inf
f∈g

F(g · φ). (12)

This equation provides an upper bound on the exact energy functional and may be used to
approximate it.

For a non-Abelian Lie algebrag, the Lie groupG is not typically contained in the
isotropy subgroupGρ at ρ ∈ CN . The coadjoint orbitOρ consists of all points Ad∗g(ρ) ∈ CN
asg ranges over the groupG. Each orbit spaceOρ is diffeomorphic to the homogeneous
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Figure 1. The Lie algebra elementsX and Y are
geometrically viewed as tangent vectors to the curves
γX andγY in the coadjoint orbit surfaceOρ .

coset spaceG/Gρ . Hence the space ofN -representable densities is a union of disjoint
coadjoint orbits each diffeomorphic to a homogeneous space.

Every Lie algebra elementX defines a tangent vector to the coadjoint orbit surface
through theN -representable densityρ. This vector is the tangent to the curveγX(t) =
Ad∗g(ρ) whereg = exp(itX), see figure 1. Note that the elements of the isotropy subalgebra
gρ correspond to null tangent vectors, and the tangent space is isomorphic to the coset vector
spaceg/gρ . For any two tangent vectorsX, Y ∈ g/gρ to the coadjoint orbit throughρ, the
bilinear form

ωρ(X, Y ) = i〈ρ, [X, Y ]〉 (13)

is antisymmetric, closed, and nondegenerate. Thus each coadjoint orbit is a symplectic
manifold [15]. Moreover the groupG acts on each orbit as a transitive group of canonical
transformations,

ωAd∗g(ρ)(Adg(X),Adg(Y )) = ωρ(X, Y ) (14)

whereX, Y are tangent vectors atρ and Adg(X) and Adg(Y ) are tangent vectors at Ad∗g(ρ).
The model group theoretic Hamiltonianh may now be defined. Choose a coadjoint

orbit Oρ in the dual space and letE denote the restriction of the energy functional to this
orbit. If X is a tangent vector atρ, denote the derivative of the energy in theX direction
by

dEρ(X) = d

dt
E(Ad∗g(ρ))|t=0 whereg = exp(itX). (15)

The model Hamiltonianh ∈ g/gρ is determined by

dEρ(X) = ωρ(h,X) for all X ∈ g. (16)

There is a unique solution to this equation forh ∈ g/gρ because the symplectic formω is
nondegenerate on the tangent space. Note that the model Hamiltonianh depends on the
point ρ in the coadjoint orbit.

In the special case when the HamiltonianH is an element of the Lie algebrag, the
energy functional is justE[ρ] = 〈ρ,H 〉 and the model Hamiltonianh is equal toH .
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Otherwise the model Hamiltonianh is the optimal approximation toH relative to the Lie
algebrag in the sense that〈φ|[H − h,X]φ〉 = 0 for all X ∈ g whereM(φ) = ρ ∈ C.

If g is the algebra of one-body operators and the coadjoint orbit consists of the
determinental densities, then the energyE is inherited uniquely from Fock space because
of the one-to-one correspondence between determinental wavefunctions and determinental
densities. The model Hamiltonianh on the manifold of determinental densities is identical
to the Hartree–Fock mean field [16]. But the mean-field Hamiltonianh is also defined
here for all orbits, including those for the nondetermental densities. The required energy
on the general orbits is the universal energy functionalE[ρ]. Hartree–Fock–Bogoliubov is
extended similarly by this construction using the algebra of quadratic quasiparticle operators
and considering the energy functional on generic orbits of quasiparticle densities [17].

4. Conclusion

A useful theoretical description of a many-body system is based on a wise choice for the
operator spaceg. If the degrees of freedom that are most relevant to the dynamics are not
represented ing, then the energy functionalE[ρ] on the dual space will be intractable. The
external Coulomb potential created by the positive charges of the massive nuclei dominates
the physics of atomic, molecular, and solid state systems. The relatively weak interaction
among the electrons can be treated in perturbation theory. Thus ordinary density functional
theory, for whichg is the algebra of one-body multiplication operators, is the appropriate
theory for these interacting fermion systems. Since the algebra of multiplication operators
is Abelian, the coadjoint orbits are just points and no mean-field approximation may be
constructed in this case.

There is no external potential acting on an atomic nucleus, and the dynamics is
determined by a competition among short-range pairing, long-range quadrupole–quadrupole,
spin–orbit, and other hadronic internucleon forces. The relative influence of the different
forces varies with the isotope. Hence there is no obvious choice forg that applies to all
nuclei. If single-particle degrees of freedom are important, then the space of operators
should be the unitary algebrau(H) of all one-body fermion operators, i.e. the span of the
operatorsb†βbα that destroy a fermion in stateα and replace it with one in stateβ. If
geometrical collective modes are active, then the symplectic algebrasp(3,R) or one of its
subalgebras is suggested [11]. Since the unitary algebrau(H) and the symplectic algebra
sp(3,R) are not Abelian, a mean-field approximation may be applied to these Lie algebrasg.
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